finally Et₂O-MeOH (10:1). The fraction obtained with petrol was separated further by TLC (petrol) to afford 1 mg acetylenes [7] and 1 mg thymol derivatives [8–10]. The fraction obtained with 10% Et₂O was separated further by TLC (50% Et₂O) to afford 2 mg 1 and 2 mg abienol. The fraction obtained with 50% Et₂O was separated further by TLC (50% Et₂O) to give 1.5 mg of a known epoxythymol.

10-Isovaleryloxy-8,9-epoxythymol-3-isovalerate (1). Colourless oil, IR $\nu_{\max}^{\text{CCL}_*}$ cm⁻¹: 1760, 1745 (CO₂R); MS m/z (rel. int.); 348.194 [M]⁺ (1.2) (C₂₀H₂₈O₅), 246 [M - C₄H₉COOH]⁺ (6.8), 145 [246 – isovalerate]⁺ (23), 85 [C₅H₉O]⁺ (57), 57 [85 – CO]⁺ (100).

Acknowledgements—I am grateful to Professor Dr. F. Bohlmann, Technical University of Berlin, for the plant material and spectral measurements and A.v.H.-Stiftung for financial support.

REFERENCES

 Merxmüller, H., Leins, P. and Roessler, H. (1977) in The Biology and Chemistry of the Compositae (Heywood, V. H.,

- Harborne, J. B. and Turner, B. L., eds.). Academic Press, London.
- Bohlmann, F., Mahanta, P. K., Jakupovic, J., Rastogi, R. C. and Natu, A. A. (1978) Phytochemistry 17, 1165.
- Qurishi, M. A., Dhar, K. L. and At, C. K. (1980) Planta Med. 38, 282.
- 4. Evan, F. J. and Schmidt, R. J. (1980) Planta Med. 38, 289.
- Papanov, G. Y., Malakov, P. Y. and Bohlmann, F. (1980) Phytochemistry 19, 152.
- Mahmoud, Z. F., Abdel Salam, N. A., Sarg, T. M. and Bohlmann, F. (1981) Phytochemistry 20, 735.
- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
- McPhail, A. T. and Onan, K. D. (1975) J. Chem. Soc. Perkin Trans. 2, 1798.
- Bohlmann, F., Mahanta, P. K., Suwita, A., Suwita, Ant., Natu, A. A., Zdero, C., Dorner, W., Ehlers, D. and Grenz, M. (1977). Phytochemistry 16, 1973.
- 10. Bohlmann, F. and Zdero, C. (1982). Phytochemistry 21, 139.
- 11. Bohlmann, F. and Suwita, A. (1978). Phytochemistry 17, 1929.
- 12. Bohlmann, F. and Zdero, C. (1977). Phytochemistry 16, 1773.
- 13. Bohlmann, F., Singh, P., Jakupovic, J., Robinson, H. and King, R. M. (1982) *Phytochemistry* 21, 705.

Phytochemistry, Vol. 24, No. 6, pp. 1378-1380, 1985. Printed in Great Britain.

0031-9422/85 \$3.00 + 0.00 © 1985 Pergamon Press Ltd.

SECO-HELENANOLIDES FROM DUGALDIA INTEGRIFOLIA

FERDINAND BOHLMANN, LAXMI N. MISRA and JASMIN JAKUPOVIC

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Received 10 August 1984)

Key Word Index—Dugaldia integrifolia; Compositae; sesquiterpenes; seco-helenanolides; 13-isobutyryloxy-silphinen-3-one.

Abstract—The aerial parts of *Dugaldia integrifolia* afforded, in addition to acetylhymenograndin, floribundin, hymenoxon and isotelekin, three new *seco*-helenanolides and two derivatives of silphinene, one being isolated previously from *Dugaldia hoopesii*.

Dugaldia integrifolia (H.B.K.) Cass. [= Helenium integrifolium (H.B.K.) Benth. + Hook.] has been investigated previously [1]. In addition to a flavone, two pseudoguaianolides were isolated. Re-investigation of the aerial parts gave in addition to widespread compounds, acetylhymenograndin [2], isotelekin [3], floribundin [4] and hymenoxon [5, 6] isolated as its diacetate 8, and three further sesquiterpene lactones, the seco-helenanolides 5-7. Furthermore, the thymol derivatives 3 and 4, 3-oxosilphinene (1) [7] and the isobutyryloxy derivative 2 were present. The mass spectrum of 2 gave the molecular formula $C_{10}H_{28}O_3$, and a strong fragment at m/z 216 agreed with the elimination of the acid part. The structure of the ester could be deduced from the ¹H NMR spectral

data (see Experimental) which were close to those of 1 [7]. However, one of the methyl singlets was replaced by a pair of doublets at $\delta 3.63$ and 3.49 and, furthermore, the characteristic signals of an isobutyryloxy group were present. The observed shift differences of H-5, H-7 and H-11 in the spectra of 1 and 2 allowed the assignment of the position of the ester group. Furthermore, the W-coupling between H-13 and H-5 α was missing, which was present in the spectrum of 1.

The structures of 5-7 also followed from the ¹H NMR spectral data (Table 1). All signals could be assigned by spin decoupling. The partial structures obtained in this way clearly showed that seco-helenanolides were present, differing only in the nature of the oxygen function, which

was at C-4 in all cases. The molecular formula of 5 indicated that a hemiacetal was present. The corresponding ¹H NMR signal (H-4) was shifted downfield in the spectra of 6 and 7 where the hydroxyl group was esterified. The nature of the ester groups clearly followed from the ¹H NMR signals. The stereochemistry at C-4 could be deduced by comparing the chemical shifts of H-4 and H-15 with those of similar lactones with known configuration. The presence of 8α,12-lactones followed from the chemical shift of H-8, which differed typically in the spectra of 5-7 from those seco-helenanolides where cislactones were established. Also the couplings of H-8 were slightly different and the H-7 signals were shifted slightly upfield.

The isolation of 1 and seco-helenanolides in both Dugalida species may be of chemotaxonomic relevance. Furthermore, the relationship of this genus to Hymenoxys and its separation from Helenium [8] are supported again by the chemistry.

EXPERIMENTAL

The dried aerial parts (660 g, voucher Turner 15344A, TEX, collected on Cofre de Perote, Mexico) were extracted with MeOH-Et₂O-petrol (1:1:1) and worked up as usual [9]. The extract obtained was separated by CC into the following fractions: 1 (petrol and Et₂O-petrol, 1:10), 2 (Et₂O-petrol, 1:1 and Et₂O) and 3 (Et₂O-MeOH, 10:1). TLC of fraction 1 (Et₂O-petrol, 1:20) gave 220 mg 1, 2 mg caryophyllene, 10 mg

 α -humulene, 5 mg 3 and 3 mg 4. TLC of fraction 2 $(CH_2Cl_2-C_6H_6-Et_2O, 4:4:1)$ gave 2 mg 2 $(R_f 0.50)$ a mixture of 6 and 7, which was separated by HPLC (RP 8, MeOH-H₂O, 13:7, flow rate 3 ml/min, ca 100 bar), affording 1.5 mg 6 (R_c 11.0 min) and 1 mg 7 (R, 15.0 min), crude 5, which was purified by TLC (C₆H₆-CH₂Cl₂-Et₂O, 3:3:1, 2 developments) to give 1 mg 5 (R_f 0.15), 15 mg acetylhymenograndin and a mixture which could not be separated by TLC (C₆H₆-CH₂Cl₂-Et₂O, 2:2:1). HPLC (RP 8, MeOH-H₂O, 13:7) gave 10 mg quercetin, 5 mg acetylhymenograndin, 8 mg 6-methoxyluteolin and 2 mg isotelekin, which was purified by TLC (Et₂O-petrol, 4:1). Fraction 3 could not be separated by TLC or HPLC. The ¹H NMR spectrum showed no acetate signal and the mixture was heated for 8 hr with 0.2 ml Ac₂O at 70°. HPLC (RP 8, MeOH-H₂O, 4:1) followed by TLC (Et₂O) gave 5 mg of the diacetate of hymenoxon 8 $(R_c 0.42)$. Known compounds were identified by comparison with authentic material (400 MHz, 1H NMR and co-TLC). The new compounds (2 and 5-7) were homogeneous by TLC in different solvent mixtures and showed no impurities in the 'H NMR spectra.

13-Isobutyryloxy-3-oxo-silphinene (2). Colourless oil; IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 1730 (CO₂R), 1710 (C=CCO); MS m/z (rel. int.); 304.204 [M]⁺ (13) (calc. for C₁₉H₂₈O₃: 304.204), 249 [M - COCH=CH₂]⁺ (32), 216 [M - RCO₂H]⁺ (63), 201 [216 - Me]⁺ (68), 174 (42), 159 (52), 135 (56), 71 [C₃H₇CO]⁺ (70), 57 (100); ¹H NMR (CDCl₃): δ 7.59 (d, H-1), 6.04 (d, H-2), 2.25 (d, H-5 β), 1.49 (d, H-5 α), 2.09 (dd, H-7), 2.18 (ddq, H-9), 1.97 (m, H-10 α), 1.42 (m, H-10 β), 1.72 (m, H-11 α), 1.41 (m, H-11 β), 1.08 (s, H-12), 0.95 (s, H-14), 3.63 and 3.49 (d, H-13), 0.91 (d,

Short Reports

Table 1. ¹H NMR spectral data of 5-7 (400 MHz, CDCl₃, TMS as internal standard)

	5	6	7
H-1	2.17 ddd	2.10 ddd	2.09 ddd
Η-2α	1.69 dddd	1.75 m	1.75 dddd
Η-2β	1.50 m	1.50 m	1.50 m
Η-3α	3.69 ddd	3.76 ddd	3.74 ddd
H-3β	3.95 ddd	3.81 ddd	3.81 ddd
H-4	4.71 br d	5.70 s	5.69 s
Η-6α	2.02 dd	1.84 br d	1.84 dd
Η-6β	1.20 dd	1.24 dd	1.22 dd
Η-7α	3.12 br dd	2.92 br ddd	2.92 br dd
H-8β	3.81 ddd	3.83 m	3.82 m
H-9α	2.23 ddd	2.28 ddd	2.28 ddd
H-9 <i>B</i>	1.52 m	1.51 m	1.50 m
H-10 <i>β</i>	1.60 m	1.70 m	1.72 m
H-13	6.16 d	6.16 d	6.16 d
H-13'	5.45 d	5.34 d	5.34 d
H-14	0.96 d	1.00 d	1.00 d
H-15	1.02 s	1.11 <i>s</i>	1.11 s
OR	2.17 br d	1.13 d	0.87 t
		1.17 d	1.14 d
		2.54 qq	1.45 ddq
		••	1.67 ddq
			2.36 ddq

J (Hz): $1, 2\alpha = 4$; $1, 2\beta = 2\alpha, 2\beta = 2\beta, 3\alpha$ = 12.5; 1, 10 = 8; $2\alpha, 3\alpha = 3.5$; $3\alpha, 3\beta = 12$; $6\alpha, 6\beta = 15.5$; $6\alpha, 7\alpha = 1.5$; $6\beta, 7\alpha = 11$; $7\alpha, 8\beta$ = 10; $7\alpha, 13 = 3.5$; $7\alpha, 13' = 3$; $8\beta, 9\beta = 4$; $9\alpha, 9\beta = 13$; $9\beta, 10 = 1.5$; 10, 14 = 7; OiBu: 2', 3' = 2', 4' = 7; OMeBu: 2', 3' = 3', 4' = 2', 5' = 7; $3_1', 3_2' = 14$.

H-15), 2.53 (qq, H-2'), 1.13 (d, H-3'), 1.14 (d, H-4'), [J (Hz): 1, 2 = 6; 5 α , 5 β = 14; 7, 11 β = 9, 15 = 9, 10 α = 7; 7, 11 α = 9; 13, 13' = 11.5; 2', 3' = 2', 4' = 7]. [α] $_{2}^{24}$ - 10° (CHCl₃; c = 0.2). 3-Desoxy-8-epi-hymenoxon (5). Colourless oil; IR ν ^{CCl₄}_{max} cm⁻¹: 3600 (OH), 1775 (y-lactone); MS m/z (rel. int.): 266.152 [M]⁺ (3) (calc. for C₁₅H₂₂O₄: 266.152), 248 [M - H₂O]⁺ (9), 220 [248 - CO]⁺ (10), 149 (26), 61 (84), 55 (100). [α] $_{2}^{24}$ + 45° (CHCl₃; c = 0.4).

3-Desoxy-8-epi-hymenoxon isobutyrate (6). Colourless oil; IR $v_{\text{max}}^{\text{CCL}_4}$ cm⁻¹: 1780 (γ -lactone), 1740 (CO₂R); MS m/z (rel. int.): 336.194 [M]⁺ (0.7) (calc. for C₁₉H₂₈O₅: 336.194), 249 [M - OCOR]⁺ (37), 248 [M - RCO₂H]⁺ (9), 220 [248 - CO]⁺ (4), 202 [220 - H₂O]⁺ (8), 122 (22), 71 [C₃H₇CO]⁺ (100). [α]_D²⁴ - 56° (CHCl₃; c = 0.7).

3-Desoxy-8-epi-hymenoxon[2-methylbutyrate] (7). Colourless oil; IR $v_{\text{max}}^{\text{CCL}}$ cm⁻¹: 1775 (γ -lactone), 1740 (CO₂R); MS m/z (rel. int.): 350.209 [M]⁺ (0.5) (calc. for C₂₀H₃₀O₅: 350.209), 332 [M - H₂O]⁺ (1), 266 [M - O=C=C(Me)Et]⁺ (2.5), 249 [M - OCOR]⁺ (35), 248 [M - RCO₂H]⁺ (7), 85 [C₄H₉CO]⁺ (58), 57 [85 - CO]⁺ (100), [α]₂₄ - 60° (CHCl₃; c = 0.5).

57 $[85-CO]^+$ (100). $[\alpha]_D^{24}-60^\circ$ (CHCl₃; c=0.5). Hymenoxon diacetate (8). Colourless oit; ¹H NMR (CDCl₃): $\delta 6.05$ (dd, H-2), 5.74 (s, H-3), 3.30 (ddddd, H-7), 4.78 (dd, H-8), 6.25 (d, H-13), 5.42 (d, H-13'), 1.13 (d, H-14), 1.14 (s, H-15), 2.19 and 2.09 (s, OAc) [J (Hz): 1, 2 = 10; 1', 2 = 3; 6, 7 = 10; 6', 7 = 4; 7, 8 = 8; 7, 13 = 2.5; 7, 13' = 2; 8, 9 = 12; 8, 9' = 3.5; 10, 14 = 7); MS m/z (rel. int.): 366.168 $[M]^+$ (0.1) (calc. for $C_{19}H_{26}O_7$: 366.168), 307 $[M - OAc]^+$ (12), 265 $[307 - \text{ketene}]^+$ (18), 247 $[307 - \text{HOAc}]^+$ (21), 192 $[247 - C_3H_3O]^+$ (78), 55 (100). An authentic sample of hymenoxon afforded a diacetate which was identical with 8 (¹H NMR, co-TLC).

Acknowledgement—We thank Prof Dr. B. L. Turner, University of Texas at Austin, for the plant material.

REFERENCES

- Ozawa, A. T., Rivera, P. A. and Romo de Vivar, A. (1983) Rev. Latinoam. Quim. 14, 40.
- Herz, W., Bhat, S. V., Bierner, M. W. and Blount, J. F. (1980) J. Org. Chem. 45, 493.
- 3. Bohlmann, F. and Zdero, C. (1977) Phytochemistry 16, 1243.
- Herz, W., Aota, K., Holub, M. and Samek, Z. (1970) J. Org. Chem. 35, 2611.
- Kim, H. L., Rowe, L. D. and Camp, B. J. (1975) Res. Commun. Chem. Pathol. Pharmacol. 11, 647.
- Iric, G. W., Witzel, D. A., Herz, W., Kannan, R., Norman, J. O., Rushing, D. D., Johnson, J. H., Rowe, D. and Veech, J. A. (1975) J. Agric. Food Chem. 23, 841.
- Bohlmann, F., Misra, L. N., Jakupovic, J., King, R. M. and Robinson, H. (1984) J. Nat. Prod. 65.
- 8. Bierner, M. W. (1974) Brittonia 26, 385.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.